
www.manaraa.com

Loyola University Chicago Loyola University Chicago

Loyola eCommons Loyola eCommons

Computer Science: Faculty Publications and
Other Works Faculty Publications

6-2011

Intelligent Systems Development in a Non Engineering Curriculum Intelligent Systems Development in a Non Engineering Curriculum

Emily A. Brand
Loyola University Chicago

William L. Honig
Loyola University Chicago, whonig@luc.edu

Matthew Wojtowicz
Loyola University Chicago

Follow this and additional works at: https://ecommons.luc.edu/cs_facpubs

 Part of the Artificial Intelligence and Robotics Commons, Programming Languages and Compilers

Commons, and the Software Engineering Commons

Recommended Citation Recommended Citation
Emily A. Brand, William L. Honig, and Matthew Wojtowicz. 2011. Intelligent systems development in a non
engineering curriculum. In Proceedings of the 16th annual joint conference on Innovation and technology
in computer science education (ITiCSE '11). ACM, New York, NY, USA, 48-52. DOI=10.1145/
1999747.1999764 http://doi.acm.org.flagship.luc.edu/10.1145/1999747.1999764

This Conference Proceeding is brought to you for free and open access by the Faculty Publications at Loyola
eCommons. It has been accepted for inclusion in Computer Science: Faculty Publications and Other Works by an
authorized administrator of Loyola eCommons. For more information, please contact ecommons@luc.edu.

https://ecommons.luc.edu/
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/cs_facpubs
https://ecommons.luc.edu/faculty
https://ecommons.luc.edu/cs_facpubs?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/148?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/150?utm_source=ecommons.luc.edu%2Fcs_facpubs%2F76&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:ecommons@luc.edu

www.manaraa.com

Intelligent Systems Development in a Non Engineering

Curriculum
Emily A. Brand

Loyola University Chicago
Department of Computer Science

Chicago, Illinois 60611 USA
+1.512.609.0338

eabrand@gmail.com

William L. Honig
Loyola University Chicago

Department of Computer Science
Chicago, Illinois 60611 USA

+1.312.915.7988

whonig@luc.edu

Matthew Wojtowicz
Loyola University Chicago

Department of Computer Science
Chicago, Illinois 60611 USA

+1.312.915.7989

mattu16@gmail.com

ABSTRACT

Much of computer system development today is programming in

the large–systems of millions of lines of code distributed across

servers and the web. At the same time, microcontrollers have also

become pervasive in everyday products, economical to

manufacture, and represent a different level of learning about

system development. Real world systems at this level require

integrated development of custom hardware and software.

How can academic institutions give students a view of this other

extreme–programming on small microcontrollers with specialized

hardware? Full scale system development including custom

hardware and software is expensive, beyond the range of any but

the larger engineering oriented universities, and hard to fit into a

typical length course. The course described here is a solution

using microcontroller programming in high level language, small

hardware components, and the Arduino open source

microcontroller. The results of the hands-on course show that

student programmers with limited hardware knowledge are able to

build custom devices, handle the complexity of basic hardware

design, and learn to appreciate the differences between large and

small scale programming.

Categories and Subject Descriptors

C.3 [Computer Systems Organization]: Special-Purpose and

Application-Based Systems – microprocessor/microcomputer

applications, real-time and embedded systems; I.2.9 [Artificial

Intelligence]: Robotics – propelling mechanisms, sensors; K.3.2

[Computers and Education]: Computer and Information Science

Education – curriculum.

General Terms

Design, Economics, Experimentation.

Keywords

Arduino course, microcontroller course, embedded systems

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

Conference’10, Month 1–2, 2010, City, State, Country.

Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

1. INTRODUCTION
This paper presents the approach used in an experimental course

to offer small scale microcontroller system development to

computer science students. The results show that experienced

student programmers (both advanced undergraduates and graduate

students) are able to learn how to construct combined hardware

and software systems. Further, the course successfully introduces

smaller scale microcontroller development which they may not

otherwise have an opportunity to learn.

This experimental course addressing small scale embedded

programming fits in the ACM Computer Science Curriculum

2008 as the Intelligent System / Robotics knowledge area [4]. It

was conceived to limit the amount and expense of customized

hardware development but still allow students to gain exposure to

advanced intelligent systems using sensors and robotics.

The original goal was to use a small microcontroller to provide

students access to hardware control and software interactions in a

participative and “tinkering” course (similar to [5,10]). Having

experience with LEGO Mindstorms robots [13] which allow only

a few simple plug-in sensors of fixed types, we sought a more

open-ended and expandable platform. After an investigation of

various microcontrollers, the Arduino microcontroller board was

selected. Although there have been some earlier courses using the

Arduino [2] many of these have focused on the small, flexible,

wearable LilyPad variant of the Arduino controller [3,7].

2. MOTIVATION AND BACKGROUND

2.1 Small Embedded System Development
The Microsoft Windows XP operating system is 45 million lines

of code [9]. A military operating system, for specialized

surveillance computers, is 50 million lines of code [6]. Courses in

Rapid Application Development using architectures and tools

such as Service Oriented Architecture (SOA) or .NET allow

students to quickly generate large complex systems with database

management systems, network access, and web interfaces.

There is another kind of development: small, often real time

systems never destined to run on a personal computer or the

Internet. Instead of visible computers the software runs on

microcontrollers; a microcontroller is a single semiconductor chip

including a small 8 or 16-bit processor, timing circuitry, and

volatile and static memory. Microcontrollers are inside other

objects (automobiles, toasters, traffic monitors) and often a key

www.manaraa.com

part of providing the user’s features. In this world the software

has two major differences. First, the application is more intimately

tied to the physical world and hardware (sensors, controls, many

kinds of analog or digital inputs). Second, the software running on

a small microcontroller is fully in charge of the device without the

need to timeshare with other applications for the user.

Microcontrollers have limited memory and often much less

processor speed than today’s personal computers.

This smaller scale system development is becoming more visible

and a focus in the popular press [11]. Computer Science students

need to have opportunities to understand the differences from the

large applications world, acquire skills for developing small

intelligent systems, and be able to make informed decisions about

their career directions.

2.2 Open Source Microcontroller
The technical heart of the experimental course is the Arduino

microcontroller board. The Arduino Duemilanove model used in

class [1, 12] is a 6.8 by 5.3cm printed circuit board and includes

an ATmega microprocessor, connecting pins for digital and

analog input and output, several powering options, a boot loader,

and 32K bytes of memory. Thus, it is a ready-made piece part for

small projects including a variety of inputs and outputs. Students

are able to use the board without needing to learn and build the

lowest level of hardware including timing and power supply

regulation.

The Arduino hardware and software are both covered with open

source licenses. The hardware design is available to interested

users under a Creative Commons Attribution Share-Alike license.

Although not important to the class described here, the hardware

design may be freely modified and incorporated into products and

shared with the same license.

3. COURSE STRUCTURE

3.1 Student Preparation
The course was designed for experienced programmers but did

not require specific electronics or hardware preparation. Students

had previously completed a minimum of three software

development courses, with emphasis on object oriented

development in Java. Some students had considerably more

experience in distributed systems, server based software, and

mobile application development. Students included both advanced

undergraduates and masters degree seeking students.

3.2 Instruction Topics
The course covered a combination of hardware and systems /

software topics with the goal of preparing students to undertake

an individually designed project in the latter part of the 15 week

semester. Topics included:

 Introduction to Arduino microcontroller hardware and

system development (hands-on implementation of first

circuit and software)

 Electronics tutorial (amps, volts, ohms, and circuit

diagrams), building basic breadboard circuits, and

dangers of Electro Static Discharge (ESD)

 Physical world input and output (light and temperature

sensor, LED, speaker, and motor control)

 Real time software strategy without an operating system

 Designing interactive real time systems using Structured

Analysis and Design Technique (SADT) [8].

Figure 1 is an example early project used to expose students to the

basics steps of hardware and system design. The Arduino board

at the rear of the figure is connected to a circuit of multiple lights

on a solderless breadboard (front of figure). The project explores

real time performance by increasing the rate of blinking each light

and detecting when all processor time is consumed.

Figure 1. Example real time performance project.

Students completed this lab with multiple blinking LEDs with and

without using the microcontroller’s delay() function for real time

control. Then they moved onto adding buzzers and other outside

sensors to create a more complicated system with light and

temperature sensors, other input buttons, sound output, and small

motors and servo controls.

The course was structured as a seminar class with emphasis on

student prototyping or “tinkering”. There were no formal

examinations. Student’s grades were partially based on peer

evaluation of their projects and class contributions by students.

3.3 Course Equipment
The course was new and the university had not previously taught

similar classes. The physical meeting space for the course was a

departmental research and project laboratory with limited space.

The department acquired Arduino controller boards, wireless

breadboards, electronics parts, switches, joysticks, sensors, and

robotics kits for the class and from which the student’s built their

final class projects.

The course equipment cost US$2500 of which US$500 was for

hand tools, soldering equipment, and storage cases for parts

(supporting 12 students, the limit imposed by lab space). A single

Arduino Duemilanove microcontroller board, fully assembled,

costs less than US$40. Much of the equipment survived the

course unharmed and will be used in future course offerings.

www.manaraa.com

3.4 Student Projects
After working on initial simple systems with a few LED lights or

sensors, students spent about half of the course developing their

projects (some individually, others on two person teams). Student

projects included:

 Airplane glider control to maintain a heading (Figure 2)

 Tracked robot rover with wireless interface

 Memory testing game similar to SIMON

 Guitar sound modification system

 Music / speech sound generation system

 Wearable environmental sensing clothing

Figure 2. Microcomputer autonomous glider

4. COURSE FINDINGS AND LEARNING

OUTCOMES
The course was conducted as an experiment to determine both the

feasibility of teaching more hardware intensive courses and to see

if students would learn the differences between developing large

and small scale computer based systems.

4.1 Learning Small Microcontroller

Programming
The Arduino development environment forced students to

confront the differences of large and small scale programming.

First, there is no operating system beyond a basic loader and a

suggested division of the software into initialization code and a

repeated main processing loop. The standard Arduino delay()

function simply loops the processor for a number of cycles to use

up time. Student software needs to decide what to do with all of

the processor time and how to divide time between different parts

of the system.

Second, unlike most programs, a controller system usually runs

forever (or until a reset button is pressed or power is removed).

While running, the microcontroller code needs to accommodate

the differences between internal processor time and the connected

real world components. For example, it does not work to test the

state of a push button switch every millisecond (possible with the

Arduino’s processor speed of 16Mhz). Too rapid checking of the

switch state (typically as a current flow across an Arduino pin)

can result in many false inputs during the time the button is being

pressed and the contacts begin to conduct electricity. Students

learned to do “debouncing” to compare and time inputs to

determine when to act upon them.

As a result, students were forced to consider the key differences

between large and small scale programming. Although none of

the students had developed small systems in the past, the course

end survey (Figure 3) showed they believed they understood this

key distinction.

Figure 3. Do you understand the difference between

programming microcontrollers and higher level

programming(i.e., Java)?

The instructor concurred and saw further evidence in student’s

projects. For example, several projects dealt with large

differences in real time demands between different parts of their

systems (e.g. checking for inputs and driving output displays and

generating sound).

4.2 Using SADT for Design and

Communication
Microcontroller based systems are different from the computers

students normally use in classes and projects. Instead of a

keyboard, mouse, display and network connections, the

microcontroller can connect to a number of specialized input and

outputs depending on its intended function.

This combination of hardware and software thinking was a

common problem students had to overcome. Once projects began

to increase in complexity, students had trouble describing their

projects to the class. The essence of the problem was clearly

separating their software logic and hardware logic. Students

looking at a peer’s project had trouble understanding the system

just from looking at the hardware and the source code.

The solution to these problems was using a high level analysis

technique, Structured Analysis and Design Technique (SADT)

diagrams [8]. SADT gave students a common diagramming

paradigm that had the capabilities to describe both the system’s

hardware and software design on multiple levels. Design

techniques such as UML and use case diagrams, due to their

software focus, failed in comparison to SADT diagrams.

Figure 4 is a high level template SADT for student projects. The

course used SADT diagrams to clearly define the actions of the

software in response to physical world inputs. In this approach

actions are the main components (boxes) with inputs coming into

the action from the left and outputs leaving to the right. Data not

manipulated by the system (i.e., state setting, control bits) are

depicted as arrows coming into the top of the action. Software

logic (debouncing, data manipulation, routing, real time control)

is represented within the action or by decomposing it into another

diagram. Arrows to the bottom of an action box are the

mechanisms or tools used by the action.

www.manaraa.com

Figure 4. Generic SADT diagram for project analysis

All of the inward arrows coming together cause the action to

occur and the output to be created. Students’ systems typically

consisted of a sensor listener to initiate actions, cause a physical

manifestation using other devices, and possibly cause other

actions to take place immediately or after some time.

SADT diagrams allowed students to coherently present and

critique other students’ projects. With the ability to communicate

their projects, all students were able to receive quick and useful

feedback. The diagrams also allowed students to pen and paper

prototype before going through all the hardware set-up, allowing

for instructors to catch problems early and prevent later

frustration.

4.3 Running a Seminar Class with Tinkering
The course was structured as a hands-on seminar with laboratory

workshops. This informal setting with only a few formal lectures

allowed students to fully understand how microcontrollers work;

it also enabled class discussions about the labs since every student

was working on the lab at the same time. The students with more

background were able to refresh and solidify their understanding

of software or electricity and share it quickly with others. Less

experienced students could delve in with a safety net since the

professor, teaching assistants, and peers were all able to be of

assistance when a problem arose.

The most interesting aspect of small intelligent systems is the

hands-on capability and the ability to make mistakes without

major consequences. Because of the relatively inexpensive cost of

the equipment and no concern about affecting the wider network

and servers, students were able to tinker and play with their

creations. Sometimes students would simply try different circuits

and make wiring changes to see what happened and try to explain

the results. Outside of class time, students took their projects with

them and worked on them as they wished.

The authors believe that forcing a more structured class could

drain the students’ ambition, interest in microcontrollers, and low-

level programming. Keeping class lectures and exams to a

minimum allows students to take advantage of and challenge their

creativity and current skill-set. Pushing students to alter the labs

to use their own desired inputs and outputs encourages creativity

and discussion, two key features of this course.

As part of the course structure, students were asked to evaluate

other students’ work. Figure 5 summarizes the peer evaluation

results for the final projects at the end of the class. While students

do rate each other highly (above 7 on a 1 to 10 scale) they did

show a reasonable distribution between the best and the worst

work.

 Figure 5. Average Peer Rankings of Final Projects

4.4 Other Findings
In addition, the student course end survey and feedback produced

some other points of interest to those planning similar courses:

 Students enjoyed and appreciated the opportunity to

learn and practice soldering of electrical parts; 100%

rated soldering “useful” in the course end survey. Not

all construction was possible using the solderless

breadboard and jumper wires.

 Students indicated they would be willing to pay a

laboratory fee for the class. Such a fee could be used to

replace and expand the hardware components and tools

used in the class.

 Students who attempted sound generation projects such

as synthesizers had difficulties and were unsuccessful

multiple times. These topics require more preparation

and more sophisticated hardware components.

5. NEXT STEPS AND FURTHER COURSES
Future courses in similar topics can benefit from using a similar

approach and considering several possible improvements.

5.1 Speeding up the Basics
One of the most difficult aspects for the students to grasp at the

beginning of the course was electrical knowledge and

understanding. Theoretical exploration of the topic in two lectures

proved to cause more confusion than clarification. The best

approach was to lead the students through a series of hands-on

workshops that demonstrated resistance, electrical flow, and other

relevant aspects. Students at the end of the course requested that

next time there be more of these workshops in order to solidify

their foundations in electrical know how.

In order to provide students with a solid base to begin their own

project the authors suggest taking time to walk through the

following labs for students without prior electronics training:
 A light on/off switch to introduce basic electric

principles (using meters, not the microcontroller).

 A button on/off switch to teach debouncing and

introduce microcontroller sensor interaction.

 An incremental on off switch that steps up LED

brightness with each press of a button. This exercise

will introduce topics such as state in a microcontroller

www.manaraa.com

and analog output using Pulse Width Modulation

(PWM).

5.2 Interest in Machine Learning and

Robotics
When asked what topic they would most wish to continue in

future classes, the students were split between an advanced

microcontrollers class and a machine learning class. A possible

solution, while still using resources economically, is a robotics

class. This would allow for both groups to continue in their areas

of interest without the need for two classes.

A suitable robotics class can expand on the real time and control

knowledge and also allow more focus on learning and decision

making algorithms. One of the first topics that can be addressed

is communicating with other microcontrollers that control

separate, multiple motors. Another aspect of small scale

programming that robotics emphasizes is the importance of real

time. Students will be pushed to handle real time events and

program for responsiveness possibly with many inputs at once.

Students would have to handle failures due to time constraints and

learn how to minimize the loss such an error causes. Both of these

topics could prove valuable for future students.

5.3 Possible Assembly Language Option
The Arduino microcontroller provides an excellent tool for

students to get into smaller scale programming. The class used

the open source Arduino development environment and the C

programming language. Specific processor bits and flags can be

accessed and manipulated from the C language directly (e.g. the

processor library defines hardware timer number one’s data as

TCCR1B and makes it available to the C program as a variable).

However, the C language still comes between the student and

direct control of the machine. The Arduino environment allows

linkage to assembly language programs or inline assembly

language instructions for the ATmega processor of the

microcontroller.

For further and more precise planning and control of real time

response or greater understanding of the performance limits of the

microcontroller, it is reasonable to add assembly language

programming. This lower level of programming may be usefully

applied to a small device interface via the Arduino input and

output pins or to better control time delays. Future versions of the

course, or follow-on courses, will develop small projects in these

areas.

6. SUMMARY
The course was successful in accomplishing its major goals.

Institutions such as ours that have focused on purely software

courses and are without major engineering facilities should not

hesitate to bring more hardware based courses into the computing

curriculum. Open source hardware and software such as the

Arduino microcontroller make such a course both economical and

practical; it possible to effectively teach a microcontroller course

without a heavy financial cost. Students no longer need to think

that all software runs on a personal computer and a web server.

7. REFERENCES
[1] Banzi, M. 2008. Getting Started with Arduino. Maker Media,

San Rafael, CA.

[2] Brock, J. D., Bruce, R. F., and Reiser, S. L. 2009. Using

Arduino for introductory programming courses. Tutorial

Presentation. Journal of Computing Sciences in Colleges.

25,2 (Dec. 2009), 129-130.

[3] Buechley, L., Eisenberg, M. Catchen, J. and Crockett, A.

2008. The LilyPad Arduino: using computational textiles to

investigate engagement, aesthetics, and diversity in computer

science education. In Proceedings of the twenty-sixth annual

SIGCHI conference on Human factors in computing systems

(CHI ’08), ACM, New York, NY, 423-432. DOI=

http://doi.acm.org/10.1145/1357054.1357123.

[4] CS Review Task Force 2008. Computer Science Curriculum

2008: An Interim Revision of CS 2001. Association of

Computing Machinery, IEEE Computer Society.

http://www.acm.org//education/curricula/ComputerScience2

008.pdf Retrieved Jan. 10, 2011.

[5] Gehringer, E. F., and Miller, Carolyn S. 2009. Student-

generated active-learning exercises. In Proceedings of the

40th ACM technical symposium on computer science

education (SIGCSE ’09), ACM, New York, NY, 81-85.

DOI= http://doi.acm.org/10.1145/1508865.1508897

[6] Hersh, S.M. 2010. The online threat: should we be worried

about a cyber war? The New Yorker (Nov. 2010).

[7] Lau, W. W. Y., Ngai, G., Chan, S. C. F., and Cheung, J. C.

Y. 2009. Learning programming through fashion and design:

a pilot summer course in wearable computing for middle

school students. In Proceedings of the 40th ACM technical

symposium on Computer science education (SIGCSE ’09),

ACM, New York, NY, 504-508. DOI= http://doi.acm.org/

10.1145/1539024.1509041.

[8] Marca, D. A. and McGowan, C. L. 1987. SADT: Structured

Analysis and Design Technique. McGraw-Hill, New York,

NY.

[9] Microsoft Corp. 2010. A history of Windows.

http://windows.microsoft.com/en-US/windows/history

Retrieved Jan. 10, 2011.

[10] Qian, K., Liu, J., and Tao, L. 2009. Teach real-time

embedded system online with real hands-on labs. Poster. In

Proceedings of the 14th annual ACM SIGCSE conference on

Innovation and technology in computer science education

(ITiCSE ’09), ACM, New York, NY, 367-367. DOI=

http://doi.acm.org/10.1145/1595496.1563009.

[11] Siegele, L. 2010. It’s a smart world, a special report on

smart systems. The Economist (6 Nov. 2010), 3-18.

[12] Russell, D. 2010. Introduction to Embedded Systems: Using

ANSI C and the Arduino Development Environment. Morgan

and Claypool, Sebastopol, CA.

[13] Williams, A.B. 2003. The qualitative impact of using LEGO

MINDSTORMS robots to teach computer engineering. IEEE

Transactions on Education. 46,1 (Feb. 2003), 206. DOI=

http://10.1109/TE.2002.808260.

http://www.acm.org/education/curricula/ComputerScience2008.pdf%20Retrieved%20Jan.%2010
http://www.acm.org/education/curricula/ComputerScience2008.pdf%20Retrieved%20Jan.%2010
http://windows.microsoft.com/en-US/windows/history%20Retrieved%20Jan.%2010
http://windows.microsoft.com/en-US/windows/history%20Retrieved%20Jan.%2010
http://doi.acm.org/10.1145/1595496.1563009

	Intelligent Systems Development in a Non Engineering Curriculum
	Recommended Citation

	Proceedings Template - WORD

